
Frequency Response Methods 

and Stability 

 In previous chapters we examined the use of test signals such as a step and a 

ramp signal. In this chapter we consider the steady-state response of a system 

to a sinusoidal input test signal. We will see that the response of a linear 

constant coefficient system to a sinusoidal input signal is an output sinusoidal 

signal at the same frequency as the input. However, the magnitude and phase 

of the output signal differ from those of the input sinusoidal signal, and the 

amount of difference is a function of the input frequency. Thus we will be 

investigating the steady-state response of the system to a sinusoidal input as 

the frequency varies.  

 

We will examine the transfer function G(s) when s =jw and develop methods 

for graphically displaying the complex number G(j)as w  varies. The Bode plot 

is one of the most powerful graphical tools for analyzing and designing control 

systems, and we will cover that subject in this chapter. We will also consider 

polar plots and log magnitude and phase diagrams. We will develop several 

time-domain performance measures in terms of the frequency response of the 

system as well as introduce the concept of system bandwidth. 



Introduction 

The frequency response of a system is defined as the steady-state response of 

the system to a sinusoidal input signal.  The sinusoid is a unique input signal, 

and the resulting output signal for a linear system, as well as signals 

throughout the system, is sinusoidal in the steady-state; it differs form the 

input waveform only in amplitude and phase. 
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Assume that the system has dominant second-order roots
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Bode Plots  
  

Bode plot is the representation of the magnitude and phase of G(j*w) (where the 

frequency vector w contains only positive frequencies).  

To see the Bode plot of a transfer function, you can use the MATLAB  
bode  

command.  

 

For example,  

  
bode(50,[1 9 30 40]) 

  

displays the Bode plots for the  

transfer function:  

  

50 / (s^3 + 9 s^2 + 30 s + 40)  



Gain and Phase Margin  

  

Let's say that we have the following system:  

  
 where K is a variable (constant) gain and G(s) is the plant under consideration.  

  

The gain margin is defined as the change in open loop gain required to 

make the system unstable. Systems with greater gain margins can 

withstand greater changes in system parameters before becoming unstable 

in closed loop.  Keep in mind that unity gain in magnitude is equal to a gain 

of zero in dB. 

  

The phase margin is defined as the change in open loop phase shift 

required to make a closed loop system unstable.  

  

The phase margin is the difference in phase between the phase curve and -

180 deg at the point corresponding to the frequency that gives us a gain of 

0dB (the gain cross over frequency, Wgc).  

  

Likewise, the gain margin is the difference between the magnitude curve 

and 0dB at the point corresponding to the frequency that gives us a phase 

of -180 deg (the phase cross over frequency, Wpc).  



Gain and Phase Margin  

-180 



We can find the gain and phase margins for a system directly, by using MATLAB. 
Just enter the margin command.  

This command returns the gain  

and  phase margins, the gain and  

phase cross over frequencies, and  

a graphical representation of these  

on the Bode plot.  

 
margin(50,[1 9 30 40]) 
  

 

Gain and Phase Margin  



si j ii end 10
i r

range variable:i 0 Nrange for plot:

r log
st art

end









1

N
step size:

end 100highest frequency (in Hz):

N 50number of points:st art .01lowest  frequency  (in Hz):

Next, choose a frequency range for the plots (use powers of 10 for convenient plotting):

G s( )
K

s 1 s( ) 1
s

3












K 2

Assume 

ps G   180


arg G j    360 if arg G j    0 1 0  

Phase shift :

db G   20 log G j   

Magnitude:

Gain and Phase Margin  



gm 6.021gm db G gm 

Calculate the gain margin:

gm 1.732

gm root ps G gm  180 gm 

Solve for  at the phase shift  point of 180 degrees: 

gm 1.8

Now using the phase angle plot, estimate the frequency at which the phase shift crosses 180 degrees:

Gain Margin

degreespm 18.265pm ps G c  180

Calculate the phase margin:

c 1.193c root db G c  c 

Solve for the gain crossover frequency:

c 1Guess for crossover frequency:

Gain and Phase Margin  



The Nyquist Stability Criterion 
  

The Nyquist plot allows us also to predict the stability and performance of a closed-loop system 

by observing its open-loop behavior. The Nyquist criterion can be used for design purposes 

regardless of open-loop stability (Bode design methods assume that the system is stable in open 

loop). Therefore, we use this criterion to determine closed-loop stability when the Bode plots 

display confusing information.    

  

The Nyquist diagram is basically a plot of G(j* w) where G(s) is the open-loop transfer function 

and w is a vector of frequencies which encloses the entire right-half plane. In drawing the 

Nyquist diagram, both positive and negative frequencies (from zero to infinity) are taken into 

account. In the illustration below we represent positive frequencies in red and negative 

frequencies in green. The frequency vector used in plotting the Nyquist diagram usually looks 

like this (if you can imagine the plot stretching out to infinity):  

  

However, if we have open-loop poles or zeros on the jw axis, G(s) will not be defined at those 

points, and we must loop around them when we are plotting the contour. Such a contour would 

look as follows:  



The Cauchy criterion 

 
The Cauchy criterion (from complex analysis) states that when taking a closed contour in 

the complex plane, and mapping it through a complex function G(s), the number of times 

that the plot of G(s) encircles the origin is equal to the number of zeros of G(s) enclosed 

by the frequency contour minus the number of poles of G(s) enclosed by the frequency 

contour. Encirclements of the origin are counted as positive if they are in the same 

direction as the original closed contour or negative if they are in the opposite direction.  

  

When studying feedback controls, we are not as interested in G(s) as in the closed-loop 

transfer function:  
G(s) 

--------- 

1 + G(s) 

If 1+ G(s) encircles the origin, then G(s) will enclose the point -1.  

Since we are interested in the closed-loop stability, we want to know if there are any 

closed-loop poles (zeros of 1 + G(s)) in the right-half plane.  

  

Therefore, the behavior of the Nyquist diagram around the -1 point in the real axis is very 
important; however, the axis on the standard nyquist diagram might make it hard to see 

what's happening around this point  

 



Gain and Phase Margin  

Gain Margin is defined as the change in open-loop gain expressed in decibels (dB), 

required at 180 degrees of phase shift to make the system unstable.  First of all, let's say 

that we have a system that is stable if there are no Nyquist encirclements of -1, such as 

:  

 
50 

----------------------- 

s^3 + 9 s^2 + 30 s + 40 

 
 Looking at the roots, we find that we have no open loop poles in the right half plane and therefore no 

closed-loop poles in the right half plane if there are no Nyquist encirclements of -1. Now, how much 

can we vary the gain before this system becomes unstable in closed loop?   
 

The open-loop system represented by this plot will become unstable in closed loop if the gain is 

increased past a certain boundary.   



  

and that the Nyquist diagram can be viewed by typing:  

nyquist (50, [1 9 30 40 ]) 
  

 

The Nyquist Stability Criterion 



  

Phase margin as the change in open-loop phase shift required at unity gain to 

make a closed-loop system unstable.   

 

From our previous example we know that this particular system will be unstable in 

closed loop if the Nyquist diagram encircles the -1 point. However, we must also 

realize that if the diagram is shifted by theta degrees, it will then touch the -1 

point at the negative real axis, making the system marginally stable in closed 

loop. Therefore, the angle required to make this system marginally stable in 

closed loop is called the phase margin (measured in degrees). In order to find the 

point we measure this angle from, we draw a circle with radius of 1, find the 

point in the Nyquist diagram with a magnitude of 1 (gain of zero dB), and measure 

the phase shift needed for this point to be at an angle of 180 deg.  

Gain and Phase Margin  
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The Nyquist Stability Criterion 



Consider the Negative Feedback System 

  

 Remember from the Cauchy criterion that the number N of times that the plot of G(s)H(s) 

encircles -1 is equal to the number Z of zeros of 1 + G(s)H(s) enclosed by the frequency 

contour minus the number P of poles of 1 + G(s)H(s) enclosed by the frequency contour (N = 

Z - P).  

Keeping careful track of open- and closed-loop transfer functions, as well as numerators and 

denominators, you should convince yourself that:  

        the zeros of 1 + G(s)H(s) are the poles of the closed-loop transfer function  

        the poles of 1 + G(s)H(s) are the poles of the open-loop transfer function.  

The Nyquist criterion then states that:  

        P = the number of open-loop (unstable) poles of G(s)H(s)  

        N = the number of times the Nyquist diagram encircles -1  

        clockwise encirclements of -1 count as positive encirclements  

        counter-clockwise (or anti-clockwise) encirclements of -1 count as negative 

encirclements  

        Z = the number of right half-plane (positive, real) poles of the closed-loop system  

The important equation which relates these three quantities is:  
  

Z = P + N 



Knowing the number of right-half plane (unstable) poles in open loop (P), 

and the number of encirclements of -1 made by the Nyquist diagram (N), we 

can determine the closed-loop stability of the system.  

 

If Z = P + N is a positive, nonzero number, the closed-loop system is 

unstable.  

 

We can also use the Nyquist diagram to find the range of gains for a closed-

loop unity feedback system to be stable. The system we will test looks like 

this:  

where G(s) is :  

    s^2 + 10 s + 24 

   --------------- 

    s^2 - 8 s + 15 

The Nyquist Stability Criterion - Application 



This system has a gain K which can be varied in order to modify the response of the closed-loop 

system. However, we will see that we can only vary this gain within certain limits, since we have to 

make sure that our closed-loop system will be stable. This is what we will be looking for: the range 

of gains that will make this system stable in the closed loop.  

  

The first thing we need to do is find the number of positive real poles in our open-loop transfer 

function:  
   

roots([1 -8 15])  

   ans = 

  5 

  3 

The poles of the open-loop transfer function are both positive. Therefore, we need two anti-

clockwise (N = -2) encirclements of the Nyquist diagram in order to have a stable closed-loop 

system (Z = P + N). If the number of encirclements is less than two or the encirclements are not 

anti-clockwise, our system will be unstable.  

  

Let's look at our Nyquist diagram for a gain of 1:  

  

nyquist([ 1 10 24], [ 1 -8 15]) 

 

There are two anti-clockwise encirclements of -1.  
Therefore, the system is stable for a gain of 1. 

 

The Nyquist Stability Criterion 



MathCAD Implementation 
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The Nyquist Stability Criterion 

There are two anti-

clockwise encirclements 

of -1.  

Therefore, the system is 

stable for a gain of 1. 



The Nyquist Stability Criterion 



Time-Domain Performance Criteria Specified 

In The Frequency Domain 

Open and closed-loop  frequency  responses are related by :
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The Nichols Stability Method 

Polar S tability Plot - Nichols  Mathcad Implementation

This example makes a polar plot of a transfer function and draws one contour of constant 

closed-loop  magnitude. To draw the plot , enter a definition for the transfer function G(s):

G s( )
45000

s s 2( ) s 30( )


The frequency range defined by the next  two equations provides a logarithmic frequency scale 

running from 1 to 100. You can change this range by editing the definitions for m and m:

m 0 100 m 10
.02 m



Now enter a value for M to define the closed-loop magnitude contour that will be plotted. 

M 1.1

Calculate the points on the M-circle:

MCm
M

2


M
2

1

M

M
2

1

exp 2  j .01 m 












The first plot  shows G, the contour of constant  closed-loop magnitude, M 



The Nichols Stability Method 

The first plot  shows G, the contour of constant closed-loop magnitude, M, and the 

Nyquist of the open loop system 

Im G j m  

Im MCm 

0

Re G j m   Re MCm  1



The Nichols Stability Method 



The Nichols Stability Method 

G   1

j  j  1  0.2 j  1 


Mpw 2.5 dB r 0.8

The closed-loop phase angle

 at r is equal to -72 degrees and b = 1.33

The closed-loop phase angle at b is equal to

-142 degrees

Mpw 

-72 deg    wr=0.8 
-3dB 

-142 deg 



The Nichols Stability Method 

G   0.64

j  j  2
j  1 



Phase Margin = 30 degrees

On the basis of the p hase we est imate 0.30

Mpw 9 dB Mpw 2.8 r 0.88

From equation

Mpw
1

2  1 
2



 0.18

We are confronted with comflecting s

The app arent  conflict  is caused by the nature of 

G(j) which slopes rap idally  toward 180 degrees 

line from the 0-dB axis.    The designer must use 

the frequency-domain-t ime-domain correlation 

with caution
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The Nichols Stability Method 
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