Frequency Response Methods
and Stability

In previous chapters we examined the use of test signals such as a step and a
ramp signal. In this chapter we consider the steady-state response of a system
to a sinusoidal input test signal. We will see that the response of a linear
constant coefficient system to a sinusoidal input signal is an output sinusoidal
signal at the same frequency as the input. However, the magnitude and phase
of the output signal differ from those of the input sinusoidal signal, and the
amount of difference is a function of the input frequency. Thus we will be
investigating the steady-state response of the system to a sinusoidal input as
the frequency varies.

We will examine the transfer function G(s) when s =jw and develop methods

for graphically displaying the complex number G(j)as w varies. The Bode plot
is one of the most powerful graphical tools for analyzing and designing control
systems, and we will cover that subject in this chapter. We will also consider
polar plots and log magnitude and phase diagrams. We will develop severa
time-domain performance measures in terms of the frequency response
system as well as introduce the concept of system bandwidth.



Introduction

The frequency response of a system is defined as the steady-state response o
the system to a sinusoidal input signal. The sinusoid is a unique input signal,
and the resulting output signal for a linear system, as well as signals
throughout the system, is sinusoidal in the steady-state; it differs form the
input waveform only in amplitude and phase.
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Polar Plots
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Bode Plots - Real Poles
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Bode Plots - Real Poles
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Bode Plots - Real Poles (Graphical Construction)
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Bode Plots - Real Poles
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Frequency Response Plots

M agnitude: Bode Plots - Real Poles

db(G,m) = 20-log( |G(j-0)])
Phase shift:

0s(G. o) = $.arg(e(,-.m)) ~360-(if(arg(G(j-0)) > 0.1.0))
Assume

K

S
s-(1+ s)-(l + 5)

Next, choose afrequency rangefor the plots (use powers of 10 for convenient plotting):

K:=2 G(s) =

lowest frequency (in Hz): Ogart == -01 number of points: N := 50
highest frequency (in Hz): ®end = 100
. Ostart
step size:
( (Dend}
range for plot: =0..N

range variable: ®j = mend-io” Sj = J-0j
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Bode Plots - Real Poles

range for plot: i=0.N

range variable:
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Bode Plots - Complex Poles
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Bode Plots - Complex Poles
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Performance Specification In the Frequency Domain




Performance Specification In the Frequency Domain
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Performance Specification In the Frequency Domain

w:.=4

] Finding the Resonance Frequenc
Given 9 q Y

20-log(|T(w)|) = 5.282

wr = Find(w) wr = 0.813

Mpw :=1

Given

20 log(Mpw) = 5.282 Finding Maximum value of the frequency resp«
Mpw :=Find(Mpw) Mpw = 1.837 10 | |

BodeZ w) \

“10"  Closed-Loop Bode Diagram
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Performance Specification In the Frequency Domain

Assume that the system has dominant second-order roo

6=l Finding the damping factor
Given 10 .
5 -1 __,.e*’/f\\
wpw = |2(1- 2] o |
Bode2 o)

(; . FinC(C) C _ 0.284 “10 = Closed-Loop Bode Diagram
20 |

wn :=.1 05

Finding the natural frequency

Given

/ 2
Wr = wn-1—-2.C

wn := Find(wn) wn = 0.888
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Performance Specification In the Frequency Domain
Example
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Frequency Response Methods Using MATLAB
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Frequency Response Methods Using MATLAB
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Frequency Response Methods Using MATLAB

n points between 109 and 107

v
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Frequency Response Methods Using MATLAB

% Bode plot script for Figure 8.22
o
num=5*0.1 1;

f1=[1 0] f2=[0.5 1]; 13=[1/2500 .&/50 1];
den=conv(f1,conv(f2,3)); «
“a

Compute

0.6
s(1+ 05501 + S0

|
5+ %Ei]

sys=tf(num.den);
bode(sys)




Frequency Response Methods Using MATLAB
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(a)

zeta=[0.15:0.01:0.7]; =
Wr_over_wn=sqrt(1-2°zeta."2);
Mp=(2"zeta .” sqrt(1-zeta.”2)).M-1);
o

subplot(211),plot(zeta, Mp),grid
¥label("\zeta'), ylabel('M_{p\omega}' Generate plots
subplot(212),plot(zeta,wr_over_wn),grid
¥label("zeta'), ylabel("\omega_r\omega_n')

zeta ranges from 0.15 to 0.70

F K

{a) The relationship between (Mp ooy and (4, ey, ) for
a second-order system. (b)) MATLAB scripl.
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Frequency Response engravel.m

Methods Using
MATLAB

num=[K]; den=[1 3 2 K]; «

sys=tf{num,den);
w=logspace-1,1,4007;

Closed-loop transfer function

[mag.phase wl=bode(sys wi; <
[Mpl]=maximadi;wr=wil}:
T, wr

Closed-loop Bode diagram

==K=2; engrave
mg =

1.2271
W =

028171
o manual step Determine e, and £ from Fig. 8.11
. . - using M, and e

e m

==Zeta=0.29; wn=0.28; engravez

ts =
15,6740

po =

& 38.5979

engravez.m

ts=4/zeta’wn

po=100"exp -zeta " pi'sqrt 1-zeta™2))

Check specs and iterate, if necessary.




Bode Plots

Bode plot is the representation of the magnitude and phase of G(j*w) (wher
frequency vector w contains only positive frequencies).

To see the Bode plot of a transfer function, you can use the MATLAB
bode

command. 100

For example,

)
bode(50,[1 9 30 40])
—1|:”::| 1 "'iD "i1
displays the Bode plots for the 10 10 0
trar?sfg/r function: " 0 Frelquem:y “ad}s.e':j
50/(s"3+9s2+30s+40) | SRR L SN NS EH
1 10/ 0
Frequency frad}sec‘.l



e Plant
Gain and Phase Margin *_? K | ag

Let's say that we have the following syst¢

where K is a variable (constant) gain and G(s) is the plant under consideration.

The gain margin is defined as the change in open loop gain required to
make the system unstable. Systems with greater gain margins can
withstand greater changes in system parameters before becoming unstabl
in closed loop. Keep in mind that unity gain in magnitude is equal to a gai
of zero in dB.

The phase margin is defined as the change in open loop phase shift
required to make a closed loop system unstable.

The phase margin is the difference in phase between the phase curve an
180 deg at the point corresponding to the frequency that gives us a gai
0dB (the gain cross over frequency, Wgc).

Likewise, the gain margin is the difference between the magnitu
and 0dB at the point corresponding to the frequency that give



Gain and Phase Margin
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Gain and Phase Margin

We can find the gain and phase margins for a system directly, by using MATL
Just enter the margin command.

This command returns the gain Gm=13.26 dB, (w= 5477) Pm=1007 deg. (w=1.848)

and phase margins, the gain and 100 e

phase cross over frequencies, and

a graphical representation of these @

on the Bode plot. s 0
0

margin(50,[1 9 30 40])

10 o’ 10
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Gain and Phase Margin

M agnitude:

db(G,m) = 20-log( |G(j-0)])
Phase shift:

05(G.0) = 222 arg(G(j-)) - 360-(if(arg(G(j-0)) > 0,1.0))

7T
Assume

K

S
s-(1+ s)-(l + 5)

Next, choose afrequency rangefor the plots (use powers of 10 for convenient plotting):

K:=2 G(s) =

lowest frequency (in Hz): Ogart == -01 number of points: N := 50
highest frequency (in Hz): ®end = 100
. Ostart
step size:
( (Dend}
range for plot: =0..N

range variable: ®j = mend-io” Sj = J-0j




Gain and Phase Margin

Guess forcrossover frequency. oc =1
Solve for the gain crossover frequency:

®c = root(db(G,wC) ,ooc) oc = 1.193

Calculate thephase margin

pm:= PS(G,(DC) + 180 pm= 18.265 degrees

Gain Margin

Now usingthe phase angle plot, estimate the frequency at which the phase shift crosses 180 degr
ogm = 1.8

Solve forw at the phase shift point of 180 degrees:
Ogm = root(ps(G,oagm) + 180,oagm)
wgm = 1.732

Calculate thegain margin

gm:= —db(G,wgm)  gm= 6.021




The Nyquist Stability Criterion

The Nyquist plot allows us also to predict the stability and performance of a closed-lo
by observing its open-loop behavior. The Nyquist criterion can be used for design purp
regardless of open-loop stability (Bode desigh methods assume that the system is stable
loop). Therefore, we use this criterion to determine closed-loop stability when the Bode
display confusing information.

The Nyquist diagram is basically a plot of G(j* w) where G(s) is the open-loop transfer func
and w is a vector of frequencies which encloses the entire right-half plane. In drawing the
Nyquist diagram, both positive and negative frequencies (from zero to infinity) are taken int
account. In the illustration below we represent positive frequencies in red and negative
frequencies in green. The frequency vector used in plotting the Nyquist diagram usually looks
like this (if you can imagine the plot stretching out to infinity):

points, and we must loop around them when we are plotting the contour. Such a contour would

However, if we have open-loop poles or zeros on the jw axis, G(s) will not be defined at th%se
look as follows:

j-axis jw-axis
Infiniky

Real AXis

Infinity

Real AXis




The Cauchy criterion

The Cauchy criterion (from complex analysis) states that when taking a closed conto
the complex plane, and mapping it through a complex function G(s), the number of ti
that the plot of G(s) encircles the origin is equal to the number of zeros of G(s) enclose
by the frequency contour minus the number of poles of G(s) enclosed by the frequency
contour. Encirclements of the origin are counted as positive if they are in the same

direction as the original closed contour or negative if they are in the opposite direction.

When studying feedback controls, we are not as interested in G(s) as in the closed-loop
transfer function:

1 + G(s)
If 1+ G(s) encircles the origin, then G(s) will enclose the point -1.
Since we are interested in the closed-loop stability, we want to know if there are any
closed-loop poles (zeros of 1 + G(s)) in the right-half plane.

Therefore, the behavior of the Nyquist diagram around the -1 point in the real axis is ve
important; however, the axis on the standard nyqui st diagram might make it hard

what's happening around this point



Gain and Phase Margin

Gain Margin is defined as the change in open-loop gain expressed in decibels (dB),
required at 180 degrees of phase shift to make the system unstable. First of all, let's s
that we have a system that is stable if there are no Nyquist encirclements of -1, such as

50

s"3+9s"2+30s +40

Looking at the roots, we find that we have no open loop poles in the right half plane and therefore no
closed-loop poles in the right half plane if there are no Nyquist encirclements of -1. Now, how much
can we vary the gain before this system becomes unstable in closed loop?

The open-loop system represented by this plot will become unstable in closed loop if the gain is
increased past a certain boundary.

2 . 5 .

| mag Axis
Lol

Gain Difference
7 Before CL Instability

=2 1

Hea?ﬂ}«{is



The Nyquist Stability Criterion

and that the Nyquist diagram can be viewed by typing:
nyquist (50, [193040])
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Gain and Phase Margin

Phase margin as the change in open-loop phase shift required at unity gain t
make a closed-loop system unstable.

From our previous example we know that this particular system will be unstable
closed loop if the Nyquist diagram encircles the -1 point. However, we must also
realize that if the diagram is shifted by theta degrees, it will then touch the -1
point at the negative real axis, making the system marginally stable in closed
loop. Therefore, the angle required to make this system marginally stable in
closed loop is called the phase margin (measured in degrees). In order to find the
point we measure this angle from, we draw a circle with radius of 1, find the
point in the Nyquist diagram with a magnitude of 1 (gain of zero dB), and measure
the phase - | ' -

i ' § ' -

lmag Axis
2
I

yquist Diagram]

c
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The Nyquist Stability Criterion

w :=-100,-99.9..100 ji=+-1 s(W) :=j-w

4
o) 504.6

s(W)° + 9-5(W)° + 30:5(W) + 40

5 [ [ [ [ [

Im(G(w))
. 0 —g}@ ----------------------------------------- )




Consider the Negative Feedback System

Remember from the Cauchy criterion that the number N of times that the plot of G
encircles -1 is equal to the number Z of zeros of 1 + G(s)H(s) enclosed by the frequen
contour minus the number P of poles of 1 + G(s)H(s) enclosed by the frequency contou

Z-P).

Keeping careful track of open- and closed-loop transfer functions, as well as numerators
denominators, you should convince yourself that:

) the zeros of 1 + G(s)H(s) are the poles of the closed-loop transfer function

) the poles of 1 + G(s)H(s) are the poles of the open-loop transfer funct;gpt.

The Nyquist criterion then states that: —»E— ¢ a
) P = the number of open-loop (unstable) poles of G(s)H(s) T_ Confrel

) N = the number of times the Nyquist diagram encircles -1 ®

) clockwise encirclements of -1 count as positive encirclements \
) counter-clockwise (or anti-clockwise) encirclements of -1 count as negative
encirclements

o Z = the number of right half-plane (positive, real) poles of the closed-loop syste

The important equation which relates these three quantities is:

Z =P + N



The Nyquist Stability Criterion - Application

Knowing the number of right-half plane (unstable) poles in open loop (P),
and the number of encirclements of -1 made by the Nyquist diagram (N),
can determine the closed-loop stability of the system.

If Z =P + N is a positive, nonzero number, the closed-loop system is
unstable.

We can also use the Nyquist diagram to find the range of gains for a closed-

loop unity feedback svetem tn he stahle The svstem we will test Innks like
this: Gain Plant

i X Gis)

-

where G(s) is :
s™2 + 10 s + 24

s™"2 - 8 s + 15



The Nyquist Stability Criterion

This system has a gain K which can be varied in order to modify the response of the closed-loop
system. However, we will see that we can only vary this gain within certain limits, since we have
make sure that our closed-loop system will be stable. This is what we will be looking for: the rang
of gains that will make this system stable in the closed loop.

The first thing we need to do is find the number of positive real poles in our open-loop transfer
function:

roots([1 -8 15])
ans =
5
3
The poles of the open-loop transfer function are both positive. Therefore, we need two anti-
clockwise (N = -2) encirclements of the Nyquist diagram in order to have a stable closed-loop
system (Z = P + N). If the number of encirclements is less than two or the encirclements are not
anti-clockwise, our system will be unstable.

Let's look at our Nyquist diagram for a gain of 1:

nyquist([ 1 10 24], [ 1 -8 15])

lag Axis

There are two anti-clockwise encirclements of -1.
Therefore, the system is stable for a gain of 1.




The Nyquist Stability Criterion

MathCAD Implementation

w :=-100,-99.9..100

=y

s(w)2 + 10s(w) + 24

G(w) := ;
s(w) —8s(w) + 15

s(w) :=J-w

2 | |
Im(G(w))
0 or
—9 | I
-2 -1 0 1

Re(G(w))

There are two anti
clockwise encirclements
of -1.
Therefore, the syste
stable for a gain of 1



The Nyquist Stability Criterion

==num=[0.5]; den=[1210.5];
==8ys=tfinum.den);
>=MNyquist(sys)

1.5
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1.0 .
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N
o
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Time-Domain Performance Criteria Specified
In The Frequency Domain

Constant M circles.

Open and closed-loop frequency responses are related by : M=1 t
M=15 M=07
) G(joo) _ _
T — M=2 M =10.35
(o) 1+ G(jw) /\
_= 0]
Mpw = 1 ¢ < 0.707 U \/
2.04/1—¢?
Glow) = u+jv M= M(w) e
M(w) = G(jo) _ ‘ u+jv | W+ VP
1+ G(jo) 1+ U+ jv \/(1+u)2+vz

Squaring and rearrenging
which is the equation of a

2
M? 2 M 2 circle on u-v planwe with a
u- > | TV = > center at
1-M




Time-Domain Performance Criteria Specified
In The Frequency Domain

A
M,
0 A
K,
Polar plot of G( je) for two values of a gain (K, > Ky). Closed-loop frequency response of 7{ jw) = G(jw) 1 + G( jw).

MNote that H’z = K’].




The Nichols Stability Method

Polar Stability Plot - Nichol#Mathcad Implementation

T his examp le makes a polar plot of atransfer function and draws one contour of constant
closed-loop magnitude. To draw the plot, enter a definition for the transfer fun@{En

3 45000
"~ s-(s+ 2)-(s+ 30)

T he frequency range defined by the next two equations provides a logarithmic frequency scale
running from 1 to 100. You can change this range by editing the definitionsnfand o

G (s)

m := 0..100 om = 1002M

Now enter a value foiM to define the closed-loop magnitude contour that will be plotted.

M:=11
Calculate the points on the M-circle:
M2 M
MCn = . > -e><p(2-n -j-.Ol-m)
M~ —1 M™—1

T he first plot showG, the contour of constant closed-loop magnitud¥]



The Nichols Stability Method

The first plot show&, the contour of constant closed-loop magnitude], and the
Nyquist of the open loop system

m(e(ion)

Im(MCp) @“ﬂ

Re(G(j-om)), Re(MCp), - 1




The Nichols Stability Method
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Nichols chart. The phase curves for the closed-loop system are shown in color.




The Nichols Stability Method

1
j-oa-(j-oa + 1) -(O.Z-j-(o + 1)

G(co) =

Mpw = 2.5 dB o, = 0.8

T he closed-loop phase angle

at cor is equal to -72 degrees andwb = 1.33
T he closed-loop phase angle atob is equal tc
-142 degrees

Loop gain (5, in decibels

Nichols diagram for G(jw) = jw( jo + 1)(0.2jw + 1). Three poi
on curve are shown for w = 0.5, 0.8, and 1.35. respecli

-3dB

-72deg  wr=0.8 T T TR
'142 deg Loop phase, 2 (), in degrees




The Nichols Stability Method

18

G(O)) . 0.64 12
fol (o) jo+ 1)

Phase Margin = 30 degrees

On the basis of the phase we estimatg := 0.30

in decibels
[}

Mpw =9 dB Mpw = 2.8 oy := 0.88

From equation

1
2.£1-¢

We are confronted with comflectings

|
o

T\ﬁ TosXT

Loop gain Cr,

—12

The apparent conflict is caused by the nature of

G(jw) which slopes rapidally toward 180 degrees  ~!®
line from the 0-dB axis. T he designer must use

the frequency-domain-time-domain correlation

with caution 24
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Examples - Bode and Nyquist

+ (.5 :
Ris) > ‘ S

s34+ 2524+ 5405

A closed-loop control system example for
Nyquist and Bode with relative stability.




Examples - Bode 4 0.5
R(s) > 3 2
B 7+ 25+ 5+ 05
[mag,phase wl=bods(sys); ar [Gm, PmWeg, Wepl=mardinsys);
[Gm, Pm,Weog Wepl=marginimad, phase,wi;

ED I I I TTrriIt I | |
(rain margi
E 0 *.d E
£
& 50 We
1071 100 101
Example Frequency (rad/sec)

num=[0.5]; den=[1 21 C.5];

sys=tf{ num,den); T Tt ——
marginisys); E’ - Phase margin
% 200 \-——____
i W
Vi I
Gﬂl:gﬂinmgiﬂ{dﬂ} 1 1 I\I‘IIIII 1 1 1 11111
Pm = phase margin (deg) 101 100 10

Weg = freq. for phase = — 180
Wep = freq. for gain = 0 dB Frequancy (rad’'sec)




Examples - Bode

Gm = 9.5424 ¢lB (at 1 rad/sec) Pm = 42.94 deq. (at 0.64359 rad/sec)
ED T T T T T T 71T T T T T T T 17T

| (ain margin

BT
o o
T T
1 1

Magnituck (dE)
&
[}
T
1

_BD 1 1 1 1 1 11 1 1 1 1 11 11
101 100 10

Frequency (rad/sec)

D 1 1 L L L T 1 L L L LI

100 \ _

-200

Phase (deq)

-300

107t 109 10!
Fraquency (rad/sec)

num=[2.5]; < Open-loop system
den=[1210.5]
sys=tfinum,den);
* A Specify frequency range
w=logspace(-1,1,200;

%o

[mag,phase w]=bods{sys,w);
%o

margin{mag,phase, wj;




Examples - Bode and Nyquist

Gm =3.0127, Pm =49.2854

iZm = 95424 dB {at 1 rad’s=c) Pm = 48.54 deq. (at 0.64358 rad’ssc) 1.5
= 20 T T LI N R T T T T T T 11 .d_#d__--ﬂ—_'__h'_“——h-_____h
2 0 | — Guinmargin || 1.0 —= =
@ 20 . r___.-"{- ETETT R
£ a0 . 05— _ .
E: .g £ " L ‘i._ll
= ] E’ >1€?
0
'E':l 1 1 1 1 1 11 1 1 1 11 1 11 e
10! 10F 10! g | [ S
Frequency { md/zac) = 0B i | =
\‘;;{ | P = 49.28° 1]
n 1 1 1 1 1 LI 1 1 1 1 1 LI -1n Hl-\”_""— _._.----.._-
-\-\-\-‘_‘-\_
T 100 1 N N I (B ey
= | Phase margin g 4 08 06 04 02 0 02 04 06 08 A
E -200 - 7] F=al Axis
© 300 -
1 1 L1oalia 1 1 L 11111 % The Myquist plot of
1 1 %
10 m‘:mm :| 10 by 05
Frequency 8C % Gis)= ain an
% §3+25°2+5+05 Compule gain and
% pluse margins.
% with gain and phase margin calculation.
U
num=[2.5]; - Open-loop system $m=[ﬂ.5]; den=[1 21 0.5} sy==tfjnum,denj;
den=[12105]; [mag,phase, wkbode(sys); =
sys=tfinum den); [Gm P \Weg Wep]=marginimag, phass w}; _
. L Mywquist plal
% -+ Specily frequency range nyquistisys):
wi=logspaced-1,1,200); tile(['Gm = ' num2str{gm),’ Pm = ',numzaﬂﬁn:]]q—|
* Labs] gain and ph
din ns=s
I[:Elﬂ.nhﬂaﬂ.w]=hudﬂtﬂyﬁ.w]; margios on plet
marginimag,phasewl;




Examples - Nichols

24
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-12
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A

L TR

24 U |
480 -120 -80

Fhase (deqg)

0

(e (§) = 8¥s

User-supplied frequency
foptional)

[mag phase, w]=nicholsisys,w)




Examples - Nichols

20

2

o
o

CperrL oop Gain (dB)
=

10

-50
-240 220 200 180 -1&0

=140

1200 000 -80

Cpen-Loop Phass (deg)

num=[1]; den=[0.21.210];
sya=tf{num dan;

wi=logspace(-1,1400);

Set up to generate
Fig.0.27

nicholk(=ys,w); .«
nigricl

Fliot Wichols chart
and add grid lines.




